Study on Unexpected Cycloaddition Reactions of Imines with THF

Jun ZHAO, Ping XIE, Shu Feng CHEN, Xiao Tian LIANG*

Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050

Abstract: An unexpected tricyclic compound 2,3,3a,4,5,9b-hexahydrophenylfuro[3,2-c] quinoline **4** and its aromatized product **6** were obtained when the cycloaddtion of imine **1** and substituted norbornene **2** was carried out in THF with a catalytic amount of boron trifluoride. The structures of the products were determined by spectral data, and the mechanism of reaction was substantiated by the imitation reaction.

Keywords: Imine, THF, cycloaddition reaction.

The synthesis of nitrogen-containing heterocyles through cycloaddition reaction of imines has stimulated much preparative and mechanistic work^{1,2,3}. When we attempted to synthesize a polycyclic compound **3** by addition reaction of imine **1** and 5-norbornene-2,3-dicarboxylic acid **2**, however, unexpected tricyclic compounds **4** and **6** were obtained instead of the designed product **3** (**Scheme 1**). Here tetrahydrofuran (THF) served as the source of dihydrofuran which underwent cycloaddition with **1** giving **4** and **6**.

An analogous reaction was noted previously in this laboratory⁴ (**Scheme 2**). Here the starting material **7** must have been oxidatively transformed to the Schiff base (**9**) before its cycloaddition with dihydrofuran (from THF). Thus the cycloaddition reactants (**9** and dihydrofuran) were all generated *in situ* while the bromoester apparently played

Jun ZHAO et al.

the role of an acidic catalyst (probably furnishing HBr by some side-reactions).

Scheme 2

Our present work (**Scheme 1**) involved the following experimental procedure: To a solution of imine **1** (181mg, 1mmol) dissolved in anhydrous THF (15mL) with a catalytic amount of boron trifluoride (BF₃:Et₂O) at 0°C was added 5-norbornene-2,3-dicarboxylic acid **2** (182mg, 1mmol) dissolved in anhydrous THF (5mL) dropwise. The reaction mixture was then stirred for 10 hours at room temperature. Following the general work-up, compound **4** (m.p.111-112°C) was isolated as the major product in the yield of 21.5%. A small amount (5%) of oily product **6** was obtained and 60% of starting material **1** was recovered. The structures of the product **4** and **6** were confirmed by ¹HNMR, ¹³CNMR, DEPT, MS, ¹H-¹HCOSY, and ¹³C-¹HCOSY⁶.

In order to further vindicate the proposed structures of compounds 4, 6 and to explain the mechanism of the reaction, we prepared compound 4, 5 and 6 from the reaction of imine with 2,3-dihydrofuran⁵. (Scheme 3)

Scheme 3

It was found that when **5** in chloroform was exposed to the air for a while, part of the sample was oxidized to give **6**, indicating that compound **6** was the auto-oxidation product of compound **5**. The conversion of **5** into **6** was also effected by the treatment with H_2O_2 . On the contrary, compound **4** was not oxidized under the same conditions. The requirement of an all-*cis* configuration for the oxidative the removal of the hydrogens has interesting mechanistic implications.

On the basis of all experimental facts, the mechanism of the reaction depicted in

476

Study on Unexpected Cycloaddition Reactions of Imines with THF 477

Scheme 1 was proposed as follows: (Scheme 4)

Scheme 4

Some other examples can be found in **Scheme 5**. The major products **10** and **11** were obtained in the yield of 19.8% and 18.6% respectively. The corresponding aromatized product **12** was isolated in 4.5% yield, while **13** was formed only in trace amounts. (**Scheme 5**)

Scheme 5

Acknowledgment

The authors are grateful to the National Natural Science Foundation of China for financial support.

References and notes

- 1. S. Laschat. Liebigs Ann. /Recueil., 1997, 1.
- 2. E. F. Elslager, D. F. Worth, J. Heterocycl. Chem., 1969, 6, 597.
- 3. B. Crousse, J. P. Begue, D. B. Delpon, Tetrahedron Lett., 1998, 39, 5765.
- 4. Y. Zhang, Y. Z. Jiang, X. T. Liang, Chin. Chem. Lett., 1998, 9, 705.
- 5. J. Zhao, S. F. Chen, X. T. Liang, Chin. Chem. Lett., 1998, 9, 983.
- 6. Experimental data of products:

Jun ZHAO *et al*.

Compound 4: white solid, m.p.118-119°C. ¹HNMR (500MHz,CDCl₃): δ (ppm) 7.49 (td, 2H, J=7.0,1.2Hz), 7.39 (m, 3H), 7.33 (td, 1H, J=7.0,1.2), 7.10 (td, 1H, J=7.6, 2.4Hz), 6.67 (dd, 1H, J=7.6, 2.4Hz), 5.27 (d, 1H, J=7.9Hz), 4.71 (s, 1H), 3.82 (dt, 1H, J=8.4, 2.7Hz), 3.74 (dt, 1H, J=8.4, 2.7Hz), 2.82 (m, 1H), 2.24 (m, 1H), 1.58 (m, 1H). ¹³C NMR (500MHz, CDCl₃): δ (ppm) 24.62, 45.71, 57.49, 66.79, 75.00, 114.95, 119.21, 126.50, 127.64, 128.33, 128.63, 130.09. MS *m*/*z* (%): 251 (M⁺,18), 220 (8), 206 (42), 180 (11), 146 (30), 130 (64), 91 (93),77 (100).

Compound 5: white solid, m.p. 99-100°C; ¹H NMR (500MHz, CDCl₃): δ (ppm) 7.38-7.49 (m, 6H), 7.13 (m, 2H), 6.92 (m, 1H), 6.72 (m, 1H), 4.65 (s, 1H), 4.03 (m, 6H), 3.84 (m, 2H), 2.64 (m, 1H), 2.03 (m, 1H), 1.69 (m, 1H). ¹³C NMR (500MHz, CDCl₃): δ (ppm) 28.89, 43.01, 57.96, 65.28, 74.17, 114.95, 118.75, 128.15, 128.29, 128.64, 128.91, 131.14. MS *m*/*z* (%): 251 (M⁺, 52), 220 (17), 206 (100), 146 (36), 130 (60), 91 (86), 77 (80).

Compound 10: white solid, m.p.103-105°C. ¹HNMR (300MHz, CDCl₃): δ (ppm) 7.38 (d, 1H, J=2.4), 7.35 (d, 2H, J=7.2), 7.22 (d, 2H, J=7.2), 7.06 (dd, 1H, J=2.4, 8.4), 6.57 (d, 1H, J=8.4), 4.55 (d, 1H, J=5.1), 3.97-4.05 (m, 1H), 3.77-3.86 (m, 1H), 3.74 (d, 1H, 10.8), 2.47 (m, 1H), 2.38 (s, 3H), 1.96-2.08 (m, 1H), 1.65-1.74 (m, 1H); MS: *m/z* 299 (M+).

Compound 11: white solid, m.p.111-112°C. ¹HNMR (300MHz, CDCl₃): δ (ppm) 7.39 (dd, 1H, J=1.5, 7.8), 7.33 (d, 2H, J=7.8), 7.20 (d, 2H, J=7.8), 7.13 (dt, 1H, J=1.5, 7.8), 6.80 (dt, 1H, J=1.5, 7.8), 6.62 (d, 1H, J=7.8), 4.60 (d, 1H, J=5.1), 4.00 (bs, 1H), 3.99-4.05 (m, 1H), 3.80-3.88 (m, 1H), 3.77 (d, 1H, J=10.8), 2.41-2.47 (m, 1H), 2.38 (s, 3H), 2.02 (m, 1H), 1.72 (m, 1H). MS:*m*/*z* (%) 265 (M+, 72), 220 (100), 194 (10), 146 (30), 105 (51).

Compound 12: ¹H NMR (300MHz, CDCl₃): δ (ppm) 8.12 (d, 1H, J=8.7), 7.81 (d, 1H, J=2.4), 7.63 (dd, J=2.4, 8.7), 7.47 (d, 2H, J=7.8), 7.28 (d, 2H, J=7.8), 3.78 (t, 2H, J=6.3), 3.07 (t, 2H, J=6.3), 2.42 (s, 3H). MS: m/z 295 (M+).

Received 26 November 1999

Revised 13 March 2000